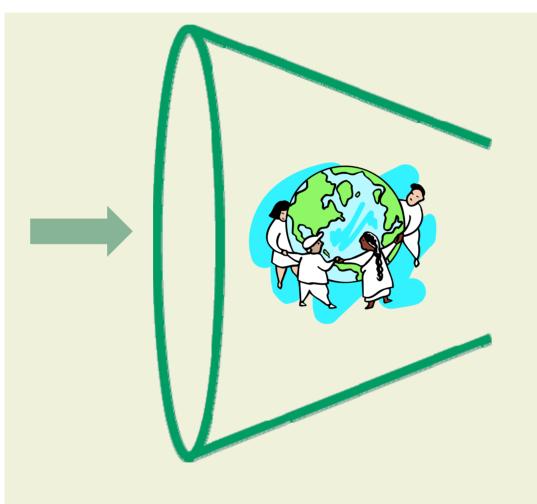

Sustainability: The Leadership Challenge

Dr. Karl-Henrik Robèrt


September 2006, Halifax, Nova Scotia

Systems thinking

- Forests
- Agriculture
- Fisheries
- Ground water
- Climate
- Metals and chemicals
- Developing world
- Global justice
- Interpersonal trust
- Stories of meaning

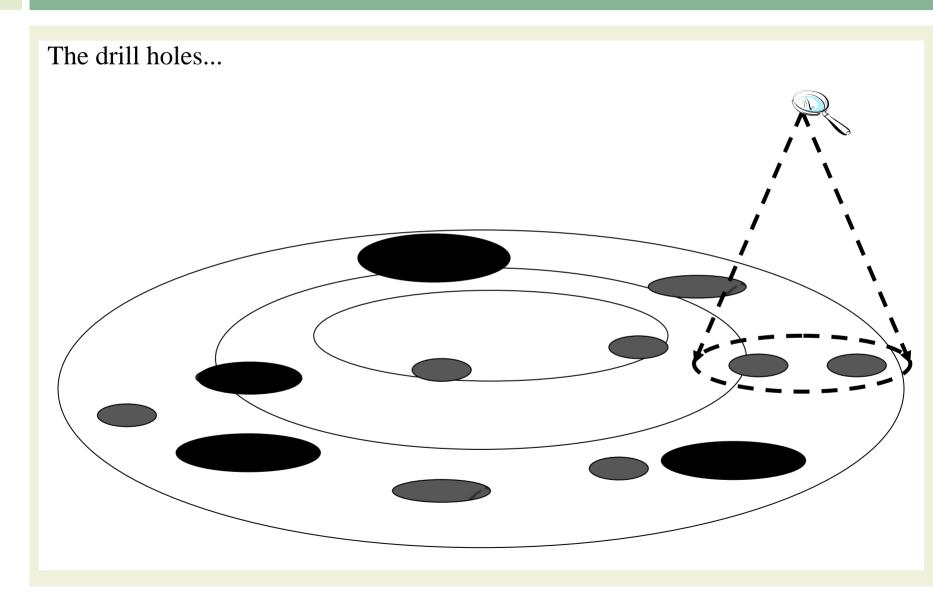
► Time

Leadership in a highly changing world

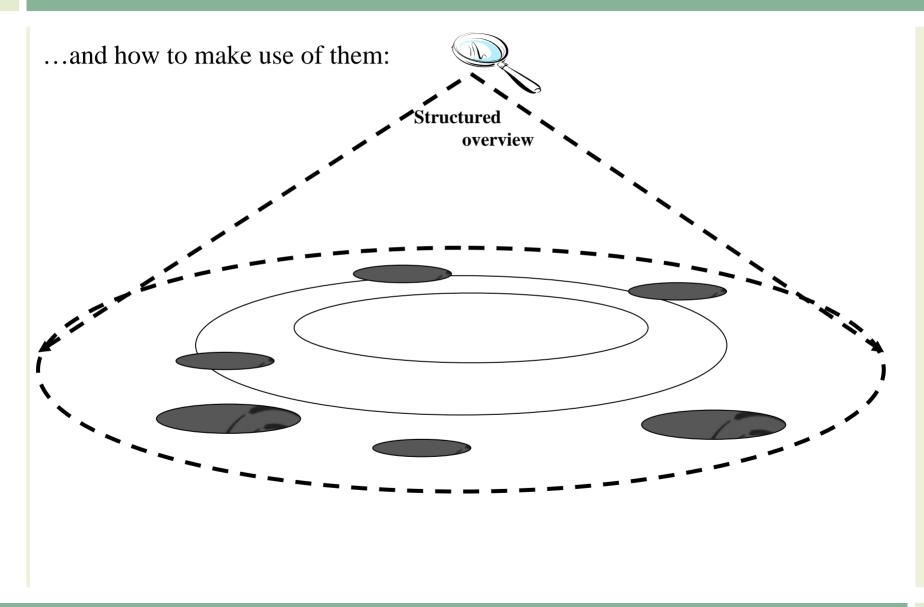
More about competence than values!

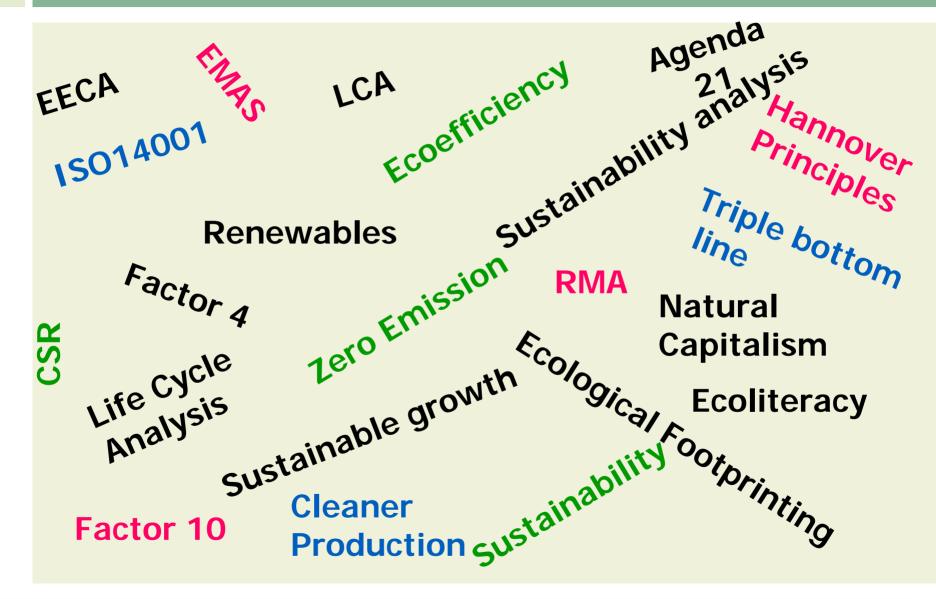
Strategic Opportunities

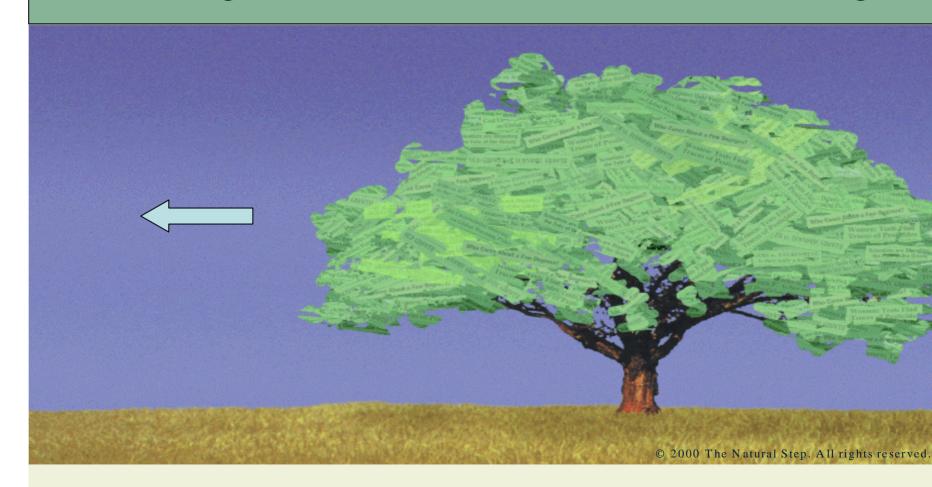
- Resource costs
- Waste management
- Tax, legislation, insurance, loans
- International agreements
- Credibility
- Employees
- Community


So, what's the problem?

Avoiding reductionism...

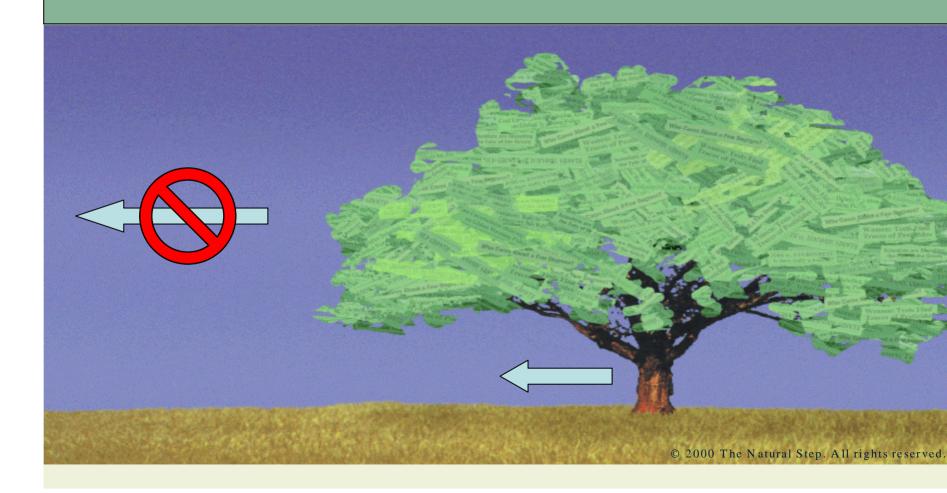






Planning from trends 'minus problems': Forecasting

Planning from idea of Success = Backcasting



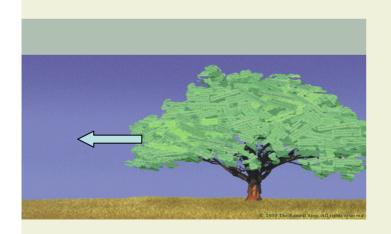
Nobody can look into the future...

...but we can invent it!

- **International NGO**
- Scientific approach
- All Embracing Framework
- **Strategic Advice & Education**
- **Leadership and Role models**
- Innovative tools and services

Strategic Leadership towards Sustainability

- International science program
- Masters program



Finding a unifying theory

Empirical methods

- Data-collection
- Ideas: Zero Emission, Foot-printing, Factor 10, Global Compact, WBC, GRI, IE, CSR....
- Competition

Deductive methods

- Theoretical/Logics
- Principles for:
- (i) System, (ii) Success
- (iii) Strategic, (iv) Actions
- (v) Tools
- Learning transdisciplinary dialogue

TNS 'hub' for cooperation with universities:

BTH (Sustainable Product Development)

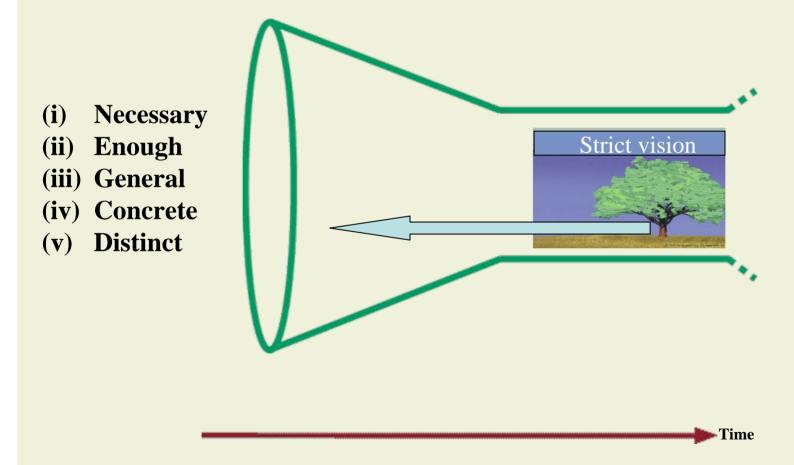
Chalmers (Physical Resource Theory)

Chalmers (Logistics and transport)

Lund's University (System dynamic modelling)

Tampere University (Industrial Ecology)

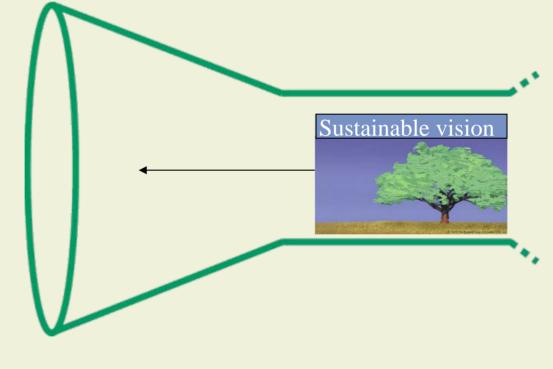
British Columbia (Social Sciences)


Newcastle Australia (Metals and minerals)

KTH (Construction and Regional Planning)

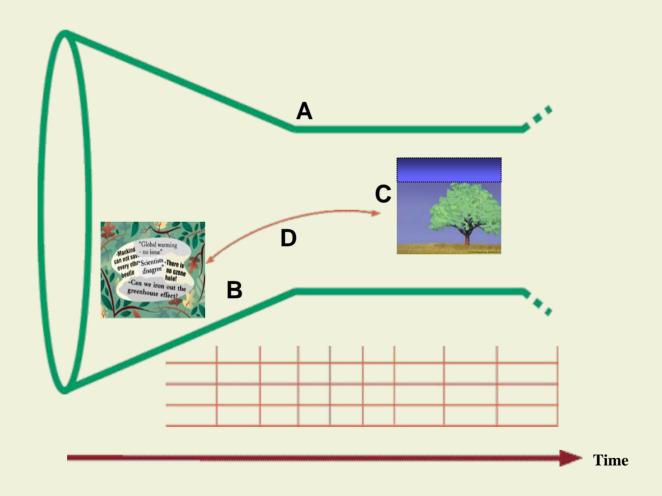
Tokyo (Materials)...

Leadership requires generic success principles

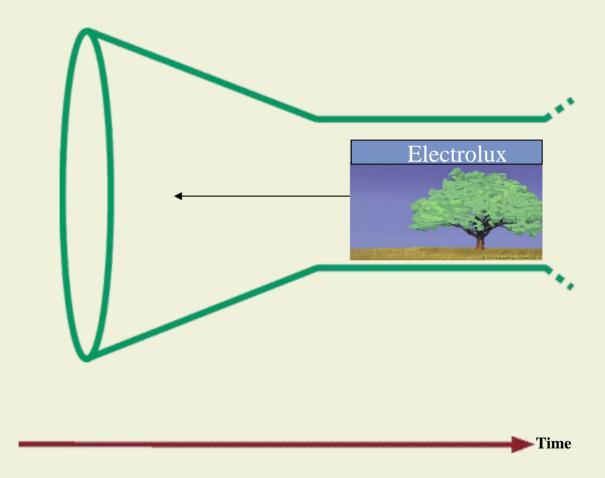


-Time

- (ii) Enough
- (iii) General
- (iv) Concrete
- (v) Distinct



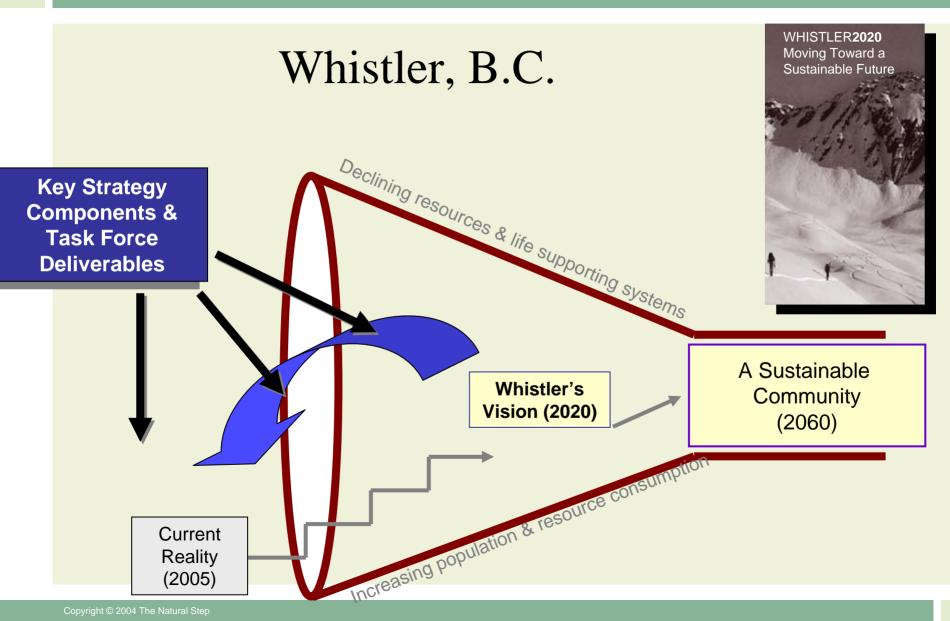
Our sustainability principles are to:


- 1. ... eliminate our contribution to systematic increases in concentrations of substances from the Earth's crust.
- 2. ... eliminate our contribution to systematic increases in concentrations of substances produced by society.
- 3. ... eliminate our contribution to systematic physical degradation of nature through over-harvesting, introduction and other forms of modification.
- 4. ... eliminate our contribution to the systematic undermining of people's ability to meet their needs.

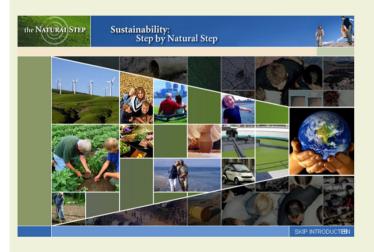
METAL	IN TOP SOIL (MG/KG)	WEATHERING (W) (KTON/YEAR)	MINING (M) (KTON/YEAR)	FOSSIL FUELS (F) (KTON/YEAR)	(M+F) / W
Al	72 000	1 100 000	18 000	34 000	0,047
Fe	26 000	390 000	540 000	34 000	1,5
Ti	2 900	44 000	2 500	1 700	0,095
Cr	54	830	3 800	34	4,6
Cu	25	380	9 000	55	24
Pb	19	290	3 300	85	12
Cd	0,35	5,3	20	3,4	4,4
Hg	0,09	1,4	5,2	10	11

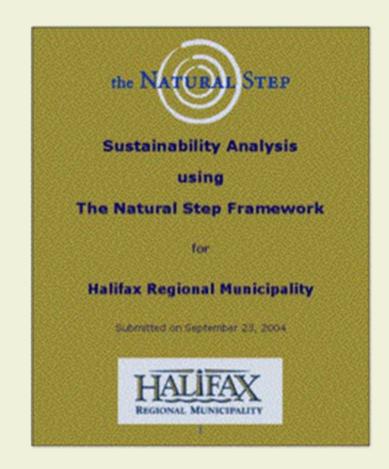
Scandic

WILSON



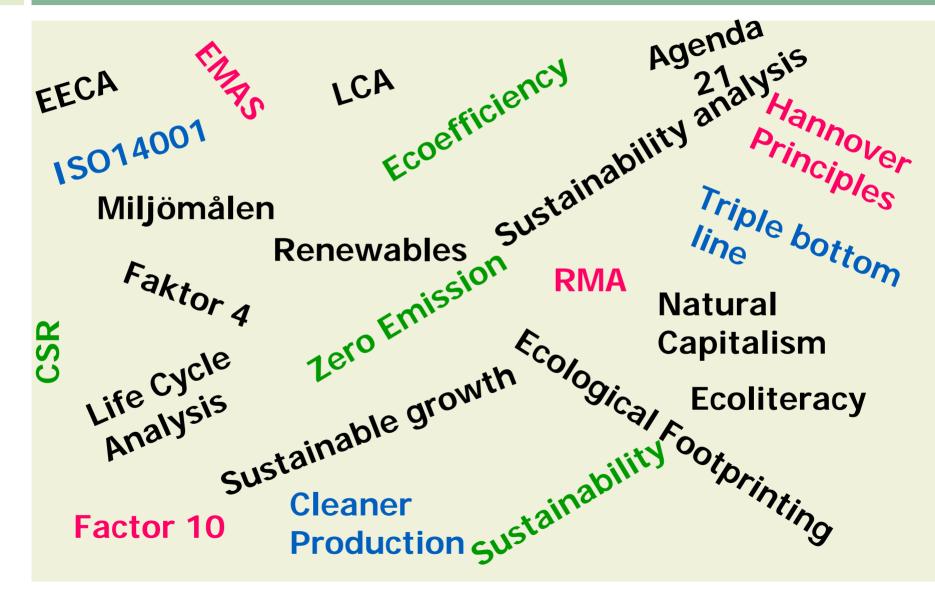
Examples from Local Governments

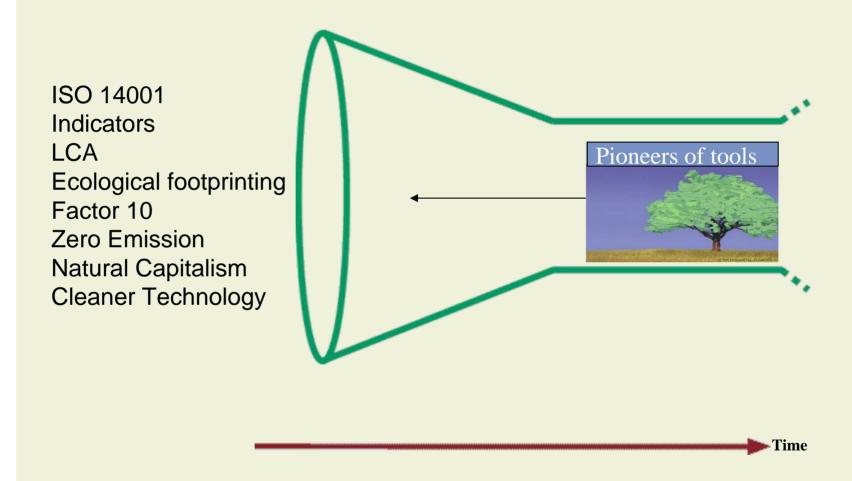




Communities in Nova Scotia

Town of Wolfville




Backcasting from Sustainable Communities

- Local government is a natural area for application:
 - e.g transportation, construction, energy, water, agriculture, land-use, social services, business, etc...
- Vision within sustainability principles
- Science-based principles "politically" neutral
- Civil service officials key to long-term approach.

Tools and concepts, conclusions

- There are many good tools and concepts
- Each have their own merits and gaps
- None can replace systems perspective
- Systems perspective increases their utility

TNS framework - summary

Robust principles for:

- ...full sustainability, informing vision.
- ...stepwise approach.
- ...continuous capital (financial, social, political) influx.
- …informing and choosing tools.

The good thing is that it has been possible to...

- 1. ...demonstrate a business advantage for individual organizations to plan systematically towards sustainability,
- ...produce a framework for planning and selection of tools,
- 3. ...expanding the number of positive role models working like this,

But the sad thing is that...

...many problems remain that slow the process:

- 1. Competitive advantage to not sharing knowledge.
- 2. Weak political leadership on Sustainability.
- 3. Mass media focus on sensations rather than solutions.
- 4. Current economic framework dysfunctional (perverse subsidies, obsolete taxes).
- 5. Industry organizations support average rather than proactive.
- 6. Companies afraid of "fouling their own nest" by being provocative and encourage tougher legislation.
- 7. Social un-sustainability leads to vicious cycles.

The next challenge:

Crossing borders!

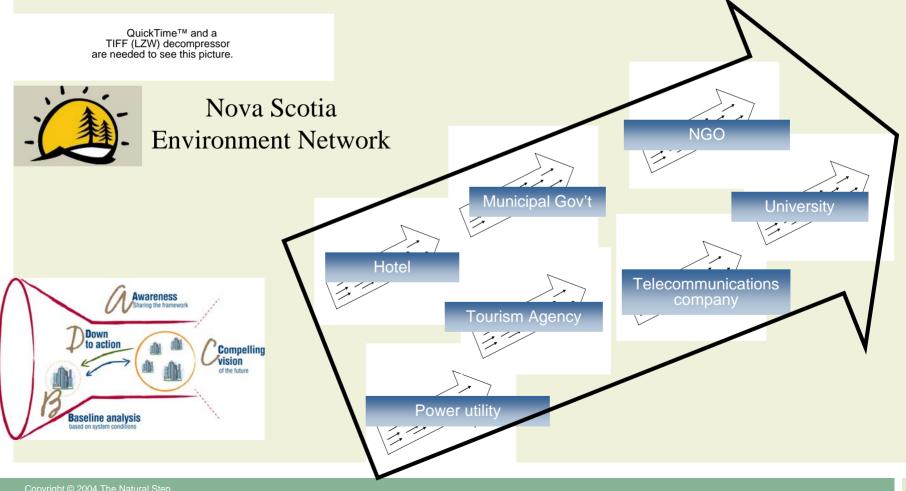
TNS Teams in

- Sweden
- •N.Z.
- •Japan
- •Brazil
- •Australia
 - •Israel
- •U.K.
- South Africa
- •Canada
- •ltaly
- ·U.S.
- •France

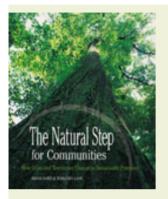
Community Partnerships

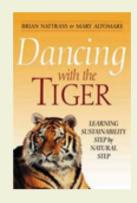
- Swedish municipalities
- China (LEAD, CBCSD)
- Lisbon Energy Agency
- Pittsburgh (Heinz Endowment)
- Canada (FCM, Whistler, Canmore, Halifax, etc)

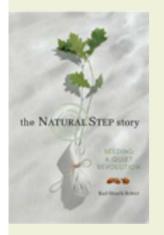
Academic Partnerships

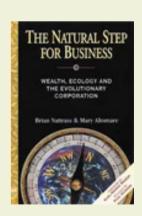

- Blekinge Institute of Technology
- Lund University
- Tampere
- British Columbia etc.

Business Partnerships


- Norsk Hydro
- PVC alternatives
- Lantmännen
- Scandic
- Skanska
- Water Jet
- etc


Atlantic Early Adopters Program





Thank you!

The Natural Step Canada

http://www.naturalstep.ca (613) 748-3001

Kelly Baxter: kbaxter@naturalstep.ca
Mike Purcell: mpurcell@naturalstep.ca

Backcasting from Principles

- from 'fix' to holistic innovative design -

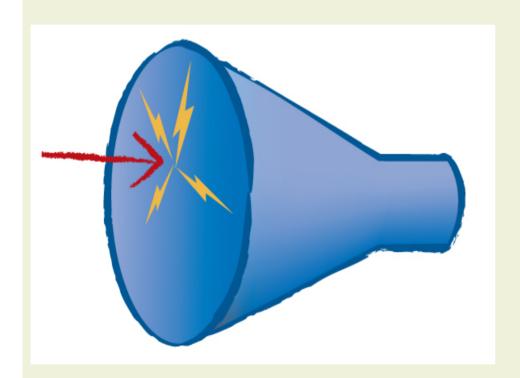


Table 2 Summary of qualitative iden compounds in mother's milk	stifications of volatile						
				2.2.4-trimethylpenta-	1	C10H22	7
compounds in mother's milk				1.3-diol			7
	(according to (32))				1	C11H24	7
				a-terpineol		C ₁₂ H ₂₆	3
Compound	No. of times found b	Compound	No. of times found			C ₁₃ H ₂₈	-
				Acids		C14H30	3
lalogenated compounds				acetic acid	2	C ₁₅ H ₃₂	2
hlorodifluoromethane	1	methyl pentanone	2	decanoic acid	1		
hlorotrifluoromethane	4	methyl hydrofuranone	1			A.kenes	
ichlorodifluoromethane	2	2-methyl-3-hexanone	1	Sulfur Compounds		C,H,	2
hloromethane	2	4-heptanone	i	sulfur dioxide	1	C,H,	5
loroethane	2	3-heptanone	4	carbon disulfide	8	C,H,o	3
ichlorofluoromethane	7 .	2-heptanone	6	dimethyl disulfide	6	C ₆ H ₁₂	8
ichloroethylene	i	methyl heptanone	2	carbonyl sulfide	1	C,H,,	8
reon 113			-			C,H.,	8
ethylene chloride	8	furyl methyl ketone	1	Nitrogen Compounds		C ₀ H ₁₈	7 .
hioroform	3	octanone	2 .	nitromethane	1	C ₁₀ H ₂₀	6
	7	acetophenone	8	C,H,N,	1	C11H22	6
1.1-trichloroethane	8	2-nonanone	4	C,H,N,	1	C ₁₂ H ₂₄	1
rbon tetrachloride	5	2-decanone	t	C ₄ H ₄ N ₂ O	1	C ₁₃ H ₂₆	1
ichloroethylene	8	alkylated factone	1	methyl acetamide	1	isoprene	1
loropentane	2	phthalide	1	benzonitrile	3		
bromochloromethane	1	•		methyl cinnoline	1	Alkynes	
trachloroethylene	7	Other oxygenated isomers				C,H,	2
chloropropene	1	C,H,O	1	Esters		C _s H _{s0}	1
lorobenzene	5	C,H,O	2	vinyl propionate	3	C,H,2	3
lorohexane	í	C,H ₁₀ O	-	ethyl acetate	1	C,H,4	3
lopentatne	1		3	ethyl-n-caproate	1	C ₀ H ₁₆	4
	1	C,H,O	1	isoamyl formate	1	C ₁₀ H ₁₈	2
methyl-1-iodobutane	-	C ₆ H ₁₀ O	2	methyl decanoate	1	C ₁₂ H ₂₂	1
iloroethylbenzene	ı	C ₄ H ₅ O ₅	1	ethyl decanoate	1		
bromodichloromethane	I	C,H12O	2			Cyclic	
chlorobenzene	3	C,H,2O	4	Ethers		cyclopentane	6
lorodecane	1	C,H,,O	2	dimethyl ether	1	methyl cyclopentane	6
chlorobenzene	1	C,H,O	2	dihydropyran	2	cyclohexane	5
		C,H,O,	1			ethyl methyl cyclohexane	1
ldehydes		C4H14O:	i	Epoxide		C ₁₀ H ₁₄ isomers	1
etaldehyde	4	C _s H ₁₀ O	2	1.3-cineole	1	C ₁₀ H ₁₆ isomers (other)	4
ethyl propanal	2	C ₂ H ₄ O ₂	2			limonene	8
butanal	6	C,H ₁₀ O ₂	-	Furans		methyl decalin	1
thylbutanal	3		1	furan	1	a-pinene	1
otonaldehyde	-	C ₉ H ₁₈ O	3	tetrahydrofuran		camphone	1
	1	C _s H _s O ₂	1	methyl furan	2	camphor	
pentanal	7	C10H12O2	1	methyl tetrahydrofuran	ī	Campror	
hexanal	8	C ₁₀ H ₁₄ O	1	ethylfuran	2	Aromatic	
aldehyde	2	C ₁₀ H ₁₆ O	2		-		
neptanal	7	C ₁₀ H ₁₈ O	3 .	dimethyifuran	!	benzene	8
nzakdehyde	8	C ₁₀ H ₂₀ O	2	2-vinylfuran	2	tokuene	3
ectanal	3	C ₁₀ H ₂₂ O	1	furaldehyde	-	ethylbenzene	8
enyl acetaldehyde	1	C _o H ₄ O ₃	i	2-n-butylfuran	I	xylene	8
onanal	6	C ₁₁ H ₂₀ O	i	2-pentylfuran		phenyl acetylene	I
thyl furaldehyde	ĭ		;	methylfuraldehyde	1	styrene	8
lecanal	2	C ₁₀ H ₁₀ O ₂		furyl methyl ketone	1	benzaldehyde	8
	4			α-furfuryl alcohol	2	C ₃ -alkylbenzene isomers	8
indecanal	2	Alcholols		benzofuran	3	C ₄ -alkylbenzene isomers	6
lodecanal		methanol	I			me hyl styrene	2
		isopropanol	8	Alkanes		dimethyl styrene	5
tones		2-methyl-2-propanol	1	C;H,	1	C _c -alkylbenzene isomers	2
tone	3	n-propanol	1	C,H ₁₉	6	naphthalene	6
thyl ethyl ketone	5	I-butanol	3	C,H,-	3	C _a -alkylbenzene isomers	1
thyl propyl ketone	2	l-pentanol	1	C ₅ H ₁₄	3	,,	
	ī	α-furfuryl alcohol	2	C ₂ H ₁	7	* Arranged by class in approximate elution	on order
thyl vinyl ketone						"Twelve total ;amples: 6-Bayonne, NJ; 2-Jersey City, NJ; 2-	
thyl vinyl ketone yl vinyl ketone	4	2-ethyl-l-hexanol phenol	-	C,H,	7	"Twelve total :amples: 6-Bayonne NI- ?	1-Jersey City NI- 2

Strategic question 1:

"How does Social Sustainability influence Success?"

All business is about people.

- Market confidence and trade mark.
- New market solutions
- Ahead of authorities and legislation
- Working climate and culture
- Productivity in value chain

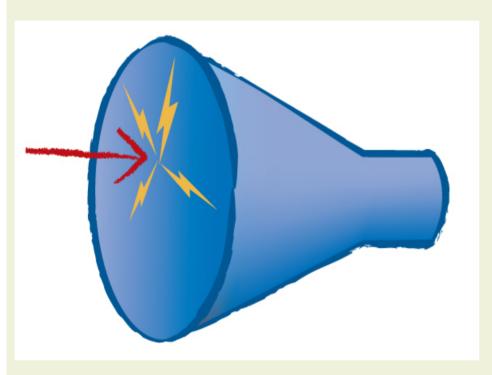
Or in short – to see business ideas and avoid costs is at least as important as image!

Problem?

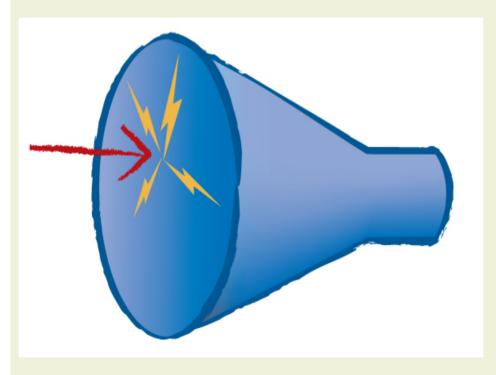
Stress
(Competition and perceived time constraints)

- **✓**Exclusive bus lanes
- **√**Flexibility
- **√**Cost-effective

- √ Efficient terminals
- ✓Information systems
- ✓ Pre ticket systems



Strategic question 2:


"Is sustainability possible at all"?

- Food is constraint?
- Energy?
- Technology?
- Money?
- Other constraints?

"So what are the constraints?"

- Not food!
- Not energy!
- Not technology!
- Not money!

Will we get the Leadership in time?

Leadership, conclusions

- 1. Competent leadership requires integration of sustainability.
- 2. Leadership is top-management's responsibility (expert amateur).
- 3. 'Strategy' implies to at least know what you want.
- 4. Nobody can look into the future ...but we can invent it.
- 5. Principled definition of distant goal necessary and possible.
- 6. Strategy is step by step approach during resource influx.
- 7. Many role models in business and regional planning.